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Abstract: This article aims to introduce the terms NI-Natural Intelligence, AI-Artificial Intelligence, ML-

Machine Learning, DL-Deep Learning, ES-Expert Systems and etc. used by modern digital world to 

mining and mineral processing and to show the main differences between them. As well known, each 

scientific and technological step in mineral industry creates huge amount of raw data and there is a 

serious necessity to firstly classify them. Afterwards experts should find alternative solutions in order 

to get optimal results by using those parameters and relations between them using special simulation 

software platforms. Development of these simulation models for such complex operations is not only 

time consuming and lacks real time applicability but also requires integration of multiple software 

platforms, intensive process knowledge and extensive model validation. An example case study is also 

demonstrated and the results are discussed within the article covering the main inferences, comments 

and decision during NI use for the experimental parameters used in a flotation related postgraduate 

study and compares with possible AI use. 

Keywords: NI-Natural Intelligence, AI-Artificial Intelligence, ML-Machine Learning, DL-Deep 
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1. Introduction 

In the modern world AI, ML and DL are often used interchangeably and at times can be confusing. AI 

is a very broad term used to describe any system that can perform tasks that usually require the 

intelligence of a human. ML is a subset of AI whilst DL is a subset of ML algorithms. It is well known 

that NI of design ability and the nature of design activity can be used together with AI. Fig. 1 shows AI, 

ML and DL concepts altogether.  

 

Fig. 2. The concepts of AI, ML and DL (Regunath, 2021) 

The ability to design is widespread amongst all people, but some people appear to be better 

designers than others. Quotations and comments from some acknowledged expert designers are used 

to reinforce general findings about the nature of design activity that have come from recent design 

http://www.minproc.pwr.wroc.pl/journal/


2 Physicochem. Probl. Miner. Process., 59(5), 2023, 167501 

 

research. The role of sketching in design is used to exemplify some of the complexity of designing. The 

comments are made about the value and relevance of research into AI in design. It is suggested that one 

aim of research in AI in design should be to help inform understanding of the natural intelligence of 

design ability. Previous work (Regunath, 2021) also defines as “DL is ML taken to the next level” and it 

is a subset of ML that is inspired by how human brains work. Typically, when people use the term deep 

learning, they refer to deep artificial neural networks. DL effectively teaches computers to do what 

humans naturally do: learning by example. The differences between DL and ML are summarised in the 

Table 1 as follows: 

Table 1. Main differences between DL and ML (Regunath, 2021) 

Differences Machine Learning Deep Learning 

Data Performs well on small to medium datasets Performs well on large datasets 

Hardware Able to function on CPU Requires significant computing power 
e.g., GPU 

Features Features need to be manually identified Learns features automatically 

Training time Quick to train Computationally intensive 

 

As a simple example of how AI, ML, and DL terminologies relate to a real-world situation, following 

Fig. 2 can be drawn in order to separate different fruits (such as apples, bananas and oranges) in a basket 

from each other by using automated sorting system.  

In the same example, the all mixed fruits are firstly brought into the sorting plant, then separation is 

planned for packaging each fruit into cardboard fruit trays and then shipped to local supermarkets. 

Natural Intelligence uses human labour, with employees sorting fruits based on their knowledge of 

what each fruit is or inspecting its label. This works well, but the business is expanding, and the 

throughput of the sorting plant is limited by the speed of the workforce. To overcome this, an automated 

system using AI is proposed to tackle this problem. An AI-based algorithm is created that segregates 

the fruits using decision logic within a rule-based engine. For example, if an apple is on the conveyor 

belt, a scanner would scan the label, informing the AI algorithm that the fruit is indeed an apple. Then 

the apple would be routed to the apple fruit tray via sorting rollers/arms. The success of the AI-based 

system hinges upon the fruit being correctly labelled by the fruit pickers and having a scanning system 

in place that can inform the algorithm of what the fruit is. Here, the plan utilises an AI-based system to 

automate intellectual tasks generally performed by humans. As this system is based upon a rule-based 

engine that has been hard coded by humans, it is an example of AI without ML. With the increased 

throughput, the business has expanded, and the fruit supply is now coming from multiple sources 

where most of the fruits are not labelled. This has now provoked the need for a system to be more 

advanced. 

 

Fig. 2. Artificial Intelligence example (Regunath, 2021) 
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An ML-based algorithm is now proposed to solve the problem of fruit sorting by enhancing the AI-

based approach when labels are not present. To create a ML model shown in Fig. 3, a definition of what 

each fruit looks like is required: this is termed feature extraction. To do this, features and attributes that 

characterise each fruit are used to create a blueprint. Features such as sizes, colours, shapes, etc., are 

extracted and used to train the algorithm to classify the fruits accordingly. For example, once the ML 

algorithm has seen what a banana looks like many times, i.e., has been trained, when a new fruit is 

presented, it can then compare the attributes against the learned features to classify the fruit. The 

algorithm provides a degree of confidence, which can then be used to determine whether the fruit is 

classified as a banana or not and routed on the conveyor belt accordingly. The system can now 

automatically classify fruits based on what it has learned. The business has been doing so well at 

improving the throughput of the sorting plant. It has cut costs and put local competitors out of business, 

taking over their fruit quota. It now needs to sort even more fruit, but this time fruit it has never seen 

before and with an added requirement of higher classification accuracy. This has provoked discussions 

around DL. 

 

Fig. 3. Machine Learning example (Regunath, 2021) 

A DL-based algorithm is now proposed to solve the problem of sorting any fruit by totally removing 

the need for defining what each fruit looks like. The main advantage of the DL model is that it does not 

necessarily need to be provided with features to classify the fruits correctly. By providing the DL model 

with lots of images of the fruits, it will build up a pattern of what each fruit looks like as shown in Fig. 

4. The images will be processed through different layers of neural network within the DL model. Then 

each network layer will define specific features of the images, like the shape of the fruits, size of the 

fruits, colour of the fruits, etc. A DL based model, however, comes at a considerable upfront cost of 

requiring significant computational power and vast amounts of data. This is similar to how our brains 

work to classify objects. Our brains process data through many layers of neurons and then finds the 

appropriate identifiers to classify objects. In this example, the DL model will group the fruits into their 

respective fruit trays based on their statistical similarities, (Regunath, 2021). 

 

Fig. 4. Deep Learning example (Regunath, 2021) 
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As a simple example of how AI, ML, and DL terminologies relate to mineral processing or 

separation, Fig. 5 can be drawn in order to separate different minerals or products (as concentrates, 

tailings and middlings) from a representative ROM with well-defined geological and mineralogical 

properties after effective crushing&sizing&comminution for liberation before using an automated 

sorting system controlled by robots. We may easily simulate these different products to a real-world 

situation, such as separation of different fruits, such as apples, bananas and oranges in a basket from 

each other by using automated sorting system as illustrated in Fig. 2. 

 

Fig. 5. Possible adaptation of AI for mineral processing (after Regunath, 2021) 

In general terms, designing and modelling of a robust system is a major component of all engineering 

disciplines. The details may differ, but the goal is always the same to achieve the optimal results and 

efficiency by applying optimal conditions with the minimal use of resources. The engineering designer 

always imagines a solution that requires the minimal set of components to achieve the best results. The 

ability to design is an important capability for a scientist or an engineer, however some designers might 

think in a different way from each other and accordingly the outcomes may vary and the final solutions 

are always affected by their personal inferences from available data, final comments and further 

decisions. Natural intelligence or design ability of an expert depends on the nature of design activity. 

Quotations and comments from some acknowledged expert designers are used to reinforce general 

findings about the nature of design activity that have come from recent design research. The role of 

sketching in design is used to exemplify some of the complexity of designing, (Cross, 1999).  

The current revolution in AI is being driven by machine learning. Machine learning is an approach 

to prediction which is data driven. It is not the first approach to focus on data, the statistical sciences 

have combined models with data for a number of years. But machine learning has taken a particular 

focus on improving the quality of prediction, whereas statistical sciences have traditionally focused 

more on explanation. Machine learning covering deep learning is giving us information processing 

engines that are equivalent to the steam engines of the industrial revolution. Machine learning allows 

us to extract knowledge from data to form a prediction. A machine learning prediction is made by 

combining a model with data to form the prediction. The manner in which this is done gives us the 

machine learning algorithm. Machine learning (ML) enables acquisition of knowledge for the main 

purpose of making decisions and predictions. The different types of learning techniques and algorithms 

used in ML can be broadly categorized into supervised learning, semi-supervised learning, 

unsupervised learning, reinforced learning as presented in Fig. 6 detail (Loberfeld, 2019). 

In supervised learning, the classifier is trained with known data so that it can predict, or classify, the 

unknown instances. On the other hand, unsupervised learning is used to learn from the input data 

without any specific outcome variable/s. Semi-supervised learning uses the labelled data from a smaller 

subset of the data to identify and label other data in order to subsequently retrain the model. 
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Reinforcement learning interacts with a dynamic environment to achieve objectives based on rewards 

and penalties. Unsupervised learning essentially determines hidden patterns based on input data 

without corresponding output labels. Because unsupervised learning uncovers distinct classes without 

a teacher, the actual labels must be manually identified. Simply put, the unsupervised learning results 

generally need manual intervention for confirmation of target classes. Although unsupervised learning 

is largely suited to more exploratory applications due to it being more subjective and without the 

straightforward objective of response prediction, its usage is ever increasing. Some common 

applications of unsupervised learning include inter alia DNA/gene classification in computational 

biology, physics, wireless communications, building systems and more, (Swana&Doorsamy, 2021). 

There are also several types of sub-processes or prediction models used in machine learning, such 

as Decision Trees, Random Forest, Linear Regression (includes regularization), Gradient Descent / Line 

of Best Fit, Logistic Regression, Hierarchical Clustering, Agglomerative Clustering, eXtreme Gradient 

Boosting, AdaBoost, Support Vector Machine (SVM), Naive Bayes, K-Nearest Neighbours (K-NN), K-

Means, Density Based Scan (DBS), Convolutional Neural Networks (CNNs)&Recurrent Neural 

Network (RNNs). 

 

Fig. 6. Machine learning algorithms in general (Loberfeld, 2019) 

Machine learning is a technology which strongly overlaps with the methodology of statistics. From 

a historical/philosophical view point, machine learning differs from statistics in that the focus in the 

machine learning community has been primarily on accuracy of prediction, whereas the focus in 

statistics is typically on the interpretability of a model and/or validating a hypothesis through data 

collection. 

The rapid increase in the availability of computers and data has led to the increased prominence of 

machine learning. This prominence is surfacing in two different but overlapping domains: data science 

and artificial intelligence. The real challenge, however, is end-to-end decision making. Taking 

information from the environment and using it to drive decision making to achieve goals, (Lawrence, 

2018).  

2. Artificial Intelligence examples in mineral processing 

There have been a limited number of published reports that process modelling simulations could be 

widely used to model the mineral processing operations considering various physical, physicochemical 

and chemical parameters altogether and estimating optimal results without conducting too many 
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experiments. However, development of simulation models for such complex operations is not only time 

consuming and lacks real time applicability but also requires integration of multiple software platforms, 

intensive process knowledge and extensive model validation using some modelling simulation 

methods, such as MODSIM, MESTEM and/or IDEAS. Moreover, modelling a process using AI models 

can provide valuable information for future applications as well. This will also allow the building of an 

intelligent system that can be used to predict the outcomes of applied mineral processing methods such 

as recoveries and grades of the products based on various input parameters including chemical and 

operational variables. These models sometimes will work provided that the ore characteristics do not 

change significantly as compared to the ore for which AI models have been developed. If there is any 

significant change in the characteristics of the ore feed in terms of ore complexity, mineral associations 

and/or ore variability, re-training of the AI model would be required. In this situation, data obtained 

through further physical experimentation and/or process model simulations models could serve well 

in providing the data required for the re-training. It is always important to keep these limitations of AI 

and ML modeling in mind while adopting these models for automation purposes (Ali&Frimpong, 2020). 

In a previous study (Gomez-Flores et al, 2022) prediction of grade and recovery in flotation from 

physicochemical and operational aspects using machine learning models were investigated in detail. 

Variables such as collector and frother concentrations, adsorption, size, liberation degree, air and water 

flow rate, mass flow, and circuit design were known to influence the flotation behaviour. Researchers 

took the task of modelling and predicting flotation behaviour using mechanistic or empirical models. 

In “kind learning environments” (e.g., repeated patterns and high–quality measurements), machine 

learning (ML) was reported to be suitable for empirical modelling of a multivariable unit operation. 

Operational variables and neural networks (NN) were commonly used to model flotation. Moreover, 

physicochemical variables were neglected for the modelling and there was a lack of information on 

database quality based on descriptive statistics. Thus, physicochemical variables and detailed database 

description were included in their work. The physicochemical variables were selected based on DLVO 

theory. Multivariable linear regression (MLR), k–nearest neighbours (KNN), decision tree (DT), and 

random forest (RF) were the ML models to model and predict flotation performance (grade and 

recovery). Furthermore, variable importance in the modeling and prediction was examined. Using 

supervised ML, their work made an effort to combine, for the first time, physicochemical aspects and 

operational aspects to predict grade and recovery. In that study (Gomez-Flores et al, 2022), firstly they 

obtained a database comprising n = 330 samples (n records under m variables) mined from 19 peer–

reviewed flotation studies via an online search of the keywork DLVO from the literature. When 

physicochemical variables were not available, values with references were used to fill gaps. Only studies 

that contained most of the required variables were considered to avoid excessive gap filling for 

physicochemical variables. From each data set, m = 18 variables were recorded to predict two target 

variables. The variables included nine physicochemical variables (Hamaker constant, Particle mean 

diameter, Bubble mean diameter, pH, Salt type, Ionic strength, Zeta potential, Bubble potential and 

Contact angle) and nine operational variables (Mineral type, Number of minerals, Flotation device type, 

Collector type, Collector concentration, Conditioning time, Frother type, Frother concentration, Flotaion 

time). The descriptive statistics of all the variables were explored and the Anderson–Darling and 

Kolmogorov–Smirnov tests were employed to evaluate their distribution at the 1% significance level to 

apply an appropriate transformation for modelling if required. 

For modelling of databases, MLR, KNN, DT, and RF were generated using Python and Sklearn 

library. The performance of these models was evaluated using the mean absolute error (MAE), which 

is a dimensional measure of accuracy, because this measure has the same scale as the grade and recovery 

percent. They firstly draw an algorithm showing all parameters that might affect the results. The 

database was split into training (90%) and holdout (10%) data sets; shuffling was applied before the 

split. The models were trained using the training set and evaluated on a testing set using a three–times 

repeated 10–fold cross–validation. The cross–validation is a resampling method to evaluate the 

performance of the models applied in small databases. Only DT and RF models were run six times 

because of their random nature. The best model (lowest MAE) was selected and used for additional 

evaluation of variable importance. Importance of physicochemical and operational variables was 
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evaluated using variable selection in recursive feature elimination with the repeated cross–validation 

(RFECV).  

In conclusion, Gomez-Flores et al (2022) criticised the mechanistic models, which were unable to 

consider a wide range of variables (from fundamental to engineering aspects) simultaneously, the 

applied ML effort (a regression work) in the study enabled prediction of GR and RC from 

physiochemical and operational features. In detail, their approach enabled quantitative prediction of 

GR and RC considering both physicochemical and operational variables without mechanistic 

understanding of flotation behaviour, which is a multivariable, multi correlated, and nonlinear unit 

operation. They envisioned that this approach could more easily bring together fundamentals of surface 

chemistry and operational engineering variables, which had previously been disconnected in many 

flotation studies. Mechanistic models are important because they help to understand the fundamentals 

of flotation. However, currently they are not suitable to unite the vast number of variables that can be 

included in flotation modelling.  

Ali et al. (2018) reviewed the related following work and stated that there have been some 

applications of the AI methods to identify the micro processes during mineral processing, especially 

coal flotation. Different influencing variables including pulp pH, impeller speed, reagent dosage and 

reagent conditioning time were studied using different AI methods. (Jorjani, et al. 2007) used the multi-

layered artificial neural network for predicting sulphur reduction (both organic and inorganic) in coal 

using mixed culture microorganisms. (Al-Thyabat, 2008) used a multilayer feed forward neural network 

to predict the effect of feed size, collector dosage and impeller speed on the flotation recovery, and the 

concentrate grade of siliceous phosphate. (Mohanty, 2009) designed a feed forward artificial neural 

network for handling the interface level in a flotation column. The model used three values of tailing 

valve opening and an interface level as input data and made a prediction on future interface levels. 

(Jorjani, et al. 2009) also used multi layered artificial neural network to predict the combustible recovery 

of coal after flotation using proximate analysis data (moisture, volatile matter and ash) and group 

maceral data (liptinite, fusinite, vitrinite and ash) as the inputs and compared the results with that of 

nonlinear regression. (Cheng, et al. 2010) used a single-layer artificial neural network to predict the solid 

concentration of coal-water slurry (CWS). Hard grove grindability index (HGI), moisture content and 

degree of parent coal coalification were used as inputs to predict the maximum CSW solid 

concentration. (Zhang, et al. 2011) used RBF neural networks to predict the washability curve of the coal 

washing process. Digital image processing was used to extract a total of 13 image feature parameters to 

be used as the inputs for the neural network model. (Khoshjavan, et al. 2011) used a multi-layered 

artificial neural network to study the effects of coal physiochemical properties on its free swelling index 

(FSI). Chemical properties including nitrogen, oxygen, carbon, hydrogen, volatile matter, BTU, fixed 

carbon content, moisture, ash and total sulfur content were used as inputs, and FSI was taken as the 

predicted output. (Bekat, et al. 2012) used a multi-layered artificial neural network for predicting the 

bottom ash quantity in a coal-fired power plant. Moisture, ash content and coal heating value were used 

as inputs. (Sadeghiamirshahidi, et al. 2013) used a multi-layered artificial neural network for predicting 

pyrite oxidation in coal washing tailing piles in northern Iran. The depth of the spoil, annual 

precipitation, initial pyrite amount present in the spoil and the effective diffusion coefficient were used 

as the inputs and the pyrite quantity remaining in the pile at various depths was taken as the predicted 

outcome. (Feng, et al. 2015) evaluated the support vector machine (SVM), the alternating conditional 

expectation (ACE) and the artificial neural network (ANN) for predicting the gross calorific value of 

coal by using the proximate analysis data and concluded that SVM performs the best, but ACE can be 

made to outperform ANN if initialised properly. (Pusat, et al. 2016) used the adaptive-neuro fuzzy 

inference system (ANFIS) for estimating moisture content at any time during the coal drying process. 

Dying air temperature, drying air velocity, bed height and sample size were the variables used as inputs 

to the ANFIS model. (Khodakarami, et al. 2017) successfully employed multi-layered ANN for 

predicting the ash content and the combustible recovery of clayey coal, processed using froth flotation 

technology in the presence of hybrid polymer aids. 

Ali et al. (2018) also reported that different process variables were used as inputs in their AI and ML 

studies. These included (1) the dosage of the Al-PAM polymer which was used as a depressant, (2) the 

dosage of sodium silicate dispersant, which is commonly used at industrial scale to disperse ash 
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particles, (3) the pH of the slurry, (4) the polymers’ conditioning time, and (5) the impeller speed of the 

cell, which is indicative of the energy input. The combustible recovery and ash content of coal in the 

froth layer were used as response variables (outputs). The present work is the first comprehensive 

attempt to develop and evaluate principal artificial intelligence (AI) and machine learning (ML) models 

to predict and model the effect of various parameters on the fine coal flotation process outcomes when 

hybrid polymeric nanoparticles are used as slime depressants. Five machine learning and AI models 

namely random forest (RF), artificial neural networks (ANN), the adaptive neuro-fuzzy inference 

system (ANFIS), Mamdani fuzzy logic (MFL) and a hybrid neural fuzzy inference system (HyFIS), were 

used. The dataset acquired through experimentation was divided into training and testing datasets. The 

models were developed using the training dataset and validation was done using the testing dataset.  

Ali et al. (2018) finally concluded their results might pave the path for enforcing data based process 

monitoring in the mineral processing industry. Modern processing industries including the mineral 

industry requires monitoring of the process to ensure both quality and safety. They stated that although 

process monitoring could be done through model, knowledge or data based methods, data-based 

intelligent process monitoring methods had the ability to work with incomplete information of the 

fundamentals of the process and the associated expert knowledge. As a lot of data has been collected 

during the past decades due to modern electronic systems and sensors, data-driven process modelling, 

monitoring, prediction and control has a huge scope in the future of the processing industry. 

3. Case studies using natural intelligence in mineral and coal processing 

As an example, the data from the present author’s Ph.D. thesis (Özkan, 1994) were deeply investigated 

in order to understand the results according to the natural intelligence (NI) approach and the comments 

were compared with the ones using the artificial intelligence (AI) methods. 

The data below shown in Table 2 were obtained from the previous reports at the references’ list of 

the thesis and they were the inspiration of the selection of the experimental parameters during flotation 

studies and considered for comparison during the experimental plan. 

Table 3 also shows similar data analysis from coal flotation experimental study in a previous article 

by Özkan (2012). 

Table 2. Experimental conditions of colemanite flotation studies (Modified from Özkan, 1994) 

Conditions/Previous 
Researchers 

Yarar, 1971 Ayok, 1976 Kose, 1988 Inferences from 
previous work 

Comment and Decision 

Feed Particle Size 0.200 mm 0.200 mm 0.150 mm Optimal particle 
size for flotation 
feed was needed 
due to liberation 
degree. 

Necessity for crushing-
grinding-sieving to 
obtain minus 200 
microns. 

Slime Particle Size 0.053 mm 0.071 mm 0.053 mm Slimes were 
main obstacles 
before  flotation. 

Necessity for desliming 
by sieving and 
decantation to remove 
the materials at particle 
size of 53-71 microns 
before flotation. 

Slime/Feed Ratio 25 % 30 % 50 % Solid materials 
losses (25-50 %) 
were 
unavoidable due 
to friability of the 
ore samples. 

Controlled crushing and 
grinding are always 
necessary for sample 
preparation. 

Solid/Liquid Ratio 30 % 25 % 20 % Efficient 
solid/liquid 
ratio (20-30 %) 
was recorded. 

These should be 
experimentally checked. 

Deslimed Feed Grade 40 % B2O3 40 % B2O3 36 % B2O3 Flotation was 
effective for the 
deslimed feed 
with 36-40 
%B2O3) grade. 

Total B2O3 % recovery 
should be questioned. 
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pH Regulation Natural Natural Natural No data. pH change should be 
measured for each tests. 

Collectors -Naphthenic Acid 
+Kerosene (1.0+1.2 
kg/t) 
-Naphthenic Acid 
+Kerosene+AP825 
(0.5+0.9+0.3 kg/t) 
-AP825+ 
Naphthenic Acid 
(0.5+0.085 kg/t) 
(5 % emulsion) 

AP825+Kerosene 
(2.0+0.25 kg/t) 
(5 % emulsion) 

AP825+Kerosene 
(1.6+0.4 kg/t)     
(5 % emulsion) 

Anionic 
collectors and 
fatty acids plus 
kerosene were 
tested around 1-
2.5 kg/t dosage 
(as 5% 
emulsion). 

Some alternative 
anionic collectors can be 
tried and the optimal 
dosage should be 
recorded. 

Frothers MIBC, Flotanol G Flotanol G Pine Oil (50 g/t) Some frother 
addition was 
necessary. 

Froth structure should 
be observed. 

Cond. Time 5 min 5-10 min No 5-10 minutes 
conditioning is 
necessary before 
flotation. 

Conditioning is 
necessary for 10 
minutes. 

Flot. Time 10 min 10 min 10 min It may continue 
till froth 
structure is 
finished. 

If kinetic flotation data 
are needed, this should 
be recorded with some 
intervals. 

OUTCOMES Yarar, 1971 Ayok, 1976 Kose, 1988 Inferences Comment and Decision 

Conc. Grade 48 % B2O3 48 % B2O3 46 % B2O3 Concentrate 
quality is 46-48 
B2O3%. It may 
change due to 
recovery data. 

Grade vs Recovery 
graphs should be 
carefully investigated. 

Recovery 90 % 95 % 88 % Recovery is 
acceptable with 
88-95 %. It may 
change 
according to 
grade values of 
concentrate and 
tailings. 

Tailings should be 
carefully observed. 

Table 3. Experimental conditions of coal flotation studies (Modified from Özkan, 2012) 

Conditions/Previous 
Researchers 

Buttermore, 
Slomka, 1991 

Harrison et al. 
2002 

Feng, Aldrich, 2005 Inferences from 
previous work 

Comment and Decision 

Feed Particle Size 0.212-0.150 mm As received 
(roughly minus 
0.300 mm) 

0.250-0.106 mm Optimal particle 
size for flotation 
feed was needed 
due to high 
friability of coal 
samples. 

Necessity for controlled 
dry and wet sieving to 
obtain minus 200 
microns. 

Slime Particle Size 0.075 mm - 0.068 mm Slimes might be 
main obstacles 
before  flotation 
as they contain 
ash forming 
clays. 

If desliming before 
flotation is considered, 
large amount of coal 
losses might be 
unavoidable. Ash 
values should be always 
observed. 

Slime/Feed Ratio 5 % Unknown Unknown Solid materials 
losses (25-50 %) 
were 
unavoidable due 
to friability of the 
ore samples. 

Controlled 
comminution and 
sieving are always 
necessary for sample 
preparation. 

Solid/Liquid Ratio 10 % 10 % 15-50 % Efficient 
solid/liquid 
ratio (20-30 %) 
was recorded. 

These should be 
experimentally checked. 

Feed Ash Value 21.3% 11.24 % 16.5 % It should always 
be measured 
after each step. 

It should always be 
controlled after each 
step. 
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Deslimed Feed Ash 10 % 10.6 % 10 % When the feed is 
deslimed by 
float&sink, 
flotation with 
addition of 
reagents might 
not be needed. 

Total ash and yield data 
should be always 
measured and 
controlled during 
desliming and flotation. 

Reagents and 
Conditioning 

None (Float&Sink 
in water) (No pH 
regulation) 

None (Float&Sink 
in water) (No pH 
regulation) 

Pine Oil (200 g/t) 
Diesel Oil (1.25-2.5 
kg/t) 

High reagent 
consumption 
might be need 
for high ash coal. 

Some alternative non-
ionic reagents (frother 
and collector 
combination can be 
tried and the optimal 
dosage should be 
recorded. 

Cond. Time - - 8 min 5-10 minutes 
conditioning is 
necessary before 
flotation. 

Conditioning is 
necessary for 5-10 
minutes. 

Flot. Time - - 4 min It may continue 
till froth 
structure is 
finished. 

If kinetic flotation data 
are needed, this should 
be recorded with some 
intervals. 

OUTCOMES Buttermore, 
Slomka, 1991 

Harrison et al. 
2002 

Feng, Aldrich, 2005 Inferences Comment and Decision 

Clean Coal Ash 5% 10 % 5 % 5-10 % ash 
content might be 
expected due to 
changing yield a 
and combustible 
recovery data. 

Ash vs Yield vs 
Combustible Recovery 
graphs should be 
carefully investigated. 

Yield and Combustible 
Recovery 

90 % 85 % 88 % 10 % Yield 
increase after 
ultrasonication 
is expected. 

Tailings part of flotation 
before and after 
ultrasonication should 
be carefully observed. 

As can be seen from Table 2 and 3, use of Natural Intelligence or rather manual selection of 

parameters for a research studies especially at laboratory stages throughout a postgraduate thesis about 

colemanite flotation and an article preparation for coal recovery require and consume too much effort 

and time in order to get achieavable results. Especially, inferences at different time intervals from 

previous literature and experimental work at limited numbers seriously affect current researcher in 

order to decide which important parameters should be taken into account when comment and decision 

are constructed. While conventional laboratory work deals with too many data and manual calculations 

to interprete for designing a scale up from less amount of actual experimental results, use of modern 

digital methods discards unnecessary parameters and derivates from actual data, therefore less amount 

of time, courage and energy are consumed in use of Artifical Intelligence. 

4. Conclusions 

As the world is deeply inside a digital era in recent years, it is inevitable that mineral processing is 

surely affected by these sudden changes in modern technology. Mining and mineral processing 

technologies definitely create huge amount of raw data and the experts (NI-Natural Intelligence, AI-

Artificial Intelligence, ML-Machine Learning, DL-Deep Learning, ES-Expert Systems and etc.) are in 

charge of commenting these in order to benefit from valuable minerals in the ore bodies. Digitalization, 

modelling and simulation start from mine exploration, reserve estimation, selection of an effective 

mining method, effective transportation, calculation of proper liberation degree for optimal 

comminution, selection of suitable particle size reduction and concentration technology, dewatering, 

tailings management, suitable storage, etc. Each step for plant design purposes contains large numerical 

data which always relate from previous to next technological equipment. There have been recently 

published reports that process modelling simulations have been widely used in an attempt to model 
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the mineral processing operations, such as flotation without requiring actual experiments. Development 

of simulation models for such complex operation is not only time consuming and lacks real time 

applicability but also requires integration of multiple software platforms, intensive process knowledge 

and extensive model validation. In conclusion, the mineral processing industry will sooner or later 

adopt AI, ML, DL, ES, etc. and we will heavily confront the terms of the digital world during plant 

design, such as with a large amount of parameters and various data.   
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